The Physics of Snowflakes: Why Is Every Snowflake Unique?

Author
researchLatvia

January 3, 2025

natural sciences research

Snowflakes are among nature's most exquisite works of art - each is unique, shaped under complex and ever-changing conditions. Why do snowflakes always have six arms? How do they develop such intricate yet symmetrical forms? From a scientific perspective, snowflake formation reveals how ice crystals emerge, develop patterns, and achieve their unparalleled uniqueness.

The essence of science is understanding what things are made of and how they work.

A snowflake is a single ice crystal in which water molecules are arranged in a precise hexagonal lattice.

Snow crystals form when water vapor in the air turns directly into ice, bypassing the liquid state. As more water vapor condenses onto the forming snow crystal, it grows larger and more elaborate, with intricate patterns emerging in the process. It is essential to note that snow crystals are not frozen raindrops; those are referred to as sleet.

Why such complex, symmetrical shapes?

The formation of a star-shaped snow crystal begins with a tiny hexagonal plate. As the crystal grows, arms extend outward. Falling through clouds, it encounters constantly changing temperatures and humidity levels, shaping each arm slightly differently at each stage.

Sniegpārslas veidošanās process. Avots: snowcrystals.com
The process of a snowflake formation. Source: snowcrystals.com

The exact shape of the crystal depends on its specific journey through the clouds. All six arms undergo identical changes simultaneously, leading to complex yet symmetrical patterns. Since no snow crystal follows the exact same path, no two snowflakes are completely identical. The six arms grow independently, yet under similar random conditions, they develop a comparable form, resulting in mostly symmetrical crystals.

Why six arms?

The six-arm symmetry of a snow crystal arises from the arrangement of water molecules in its hexagonal lattice. As this ice crystal model rotates, the hexagonal structure becomes apparent. The crystal has a three-dimensional form, and snowflakes are similarly three-dimensional. Star-shaped plates are thin and flat, while other shapes may vary. Snow crystals begin as hexagonal prisms, each with two bases and six prism faces.

There are also irregular snowflakes, as many snow crystals are not perfectly symmetrical. They grow rapidly, sometimes leading to random side branches. These combined processes occasionally result in both complex and symmetrical or asymmetrical crystals. Snowflake formation is intricate, and much remains unexplored.

Simetrisks ledus kristāls. Avots: snowcrystals.com
Symmetrical ice crystal. Source: snowcrystals.com

The symmetrical shapes and endless variety of snowflakes are closely tied to the microscopic processes within water molecules and their paths through clouds.

Each snowflake's formation is a unique result of the interplay of temperature, humidity, and atmospheric movements.

While science has explained many aspects of these processes, much about these crystalline works of art remains mysterious.

Recommended articles

research entrepreneurship

Opportunity to Turn Innovation Into a Product – Applications Open for Free Training Program

As Latvia strengthens its science and innovation ecosystem, Venture Catalysts offers a unique opportunity for researchers and entrepreneurs to acquire the skills, knowledge, and support needed to turn ideas into marketable products and services. The program is designed for founders, academic…

Investment and Development Agency of Latvia

June 27, 2025

natural sciences

Latvian and Lithuanian Scientists to Research Climate-Resilient Urban Greenery and Develop Training Programmes

Latvia and Lithuania share common challenges related to the implementation of the European Union’s environmental policy, which places particular emphasis on the development of urban green infrastructure and the introduction of climate-adapted, resilient greenery. However, at the practical level, mu…

Latvia University of Life Sciences and Technologies

June 26, 2025

research entrepreneurship

The "STEM UP!" Board Game Created in Latvia Develops STEM Skills

The educational quiz game "STEM Up!" is designed to stimulate curiosity and develop skills in the fields of science, technology, engineering and mathematics (STEM). "Our goal was to create a product that would help young people learn through play. "STEM Up!" inspires not only to learn more…

Labs of Latvia

June 20, 2025

research research

Medicines of the Future – With Deep Respect for Nature

Scientists are increasingly calling for medicine to return to its roots – to nature itself. Natural substances are becoming a crucial starting point in the development of new medicines, as their compounds tend to cause fewer side effects than the synthetic drugs to which we have grown accustomed. M…

Latvian Institute of Organic Synthesis

June 20, 2025