Research on Long-Term Deformation of 3D-Printed Polymer Structures Continues – Project TiMe3D

Author
Researcher at the Institute of Materials Mechanics of the UL EZTF Dr. Olga Bulderberga

July 16, 2025

research technologies

The University of Latvia (UL), in cooperation with Riga Technical University (RTU), continues to implement the scientific project "Investigation of the Time-Dependent Mechanical Properties of 3D-Printed Polymer Structures at Different Structural Levels" (TiMe3D).

3D drukāto polimēri.png
 Publicity image

The project involves two research groups:

  • The team from the Institute of Mechanics of Materials at the Faculty of Science and Technology, University of Latvia, led by Dr. Andrejs Aņiskevičs
  • The team from the Institute of High Performance Materials and Structures at the Faculty of Civil Engineering and Mechanical Engineering, Riga Technical University, led by Dr. Līva Pupure

The strategic goal of the project is to improve the efficiency and operational reliability of 3D-printed polymer structures by optimising their design. The main objective is to develop and validate a methodology for predicting long-term deformation of such structures.

3D printing using the Fused Filament Fabrication (FFF) technique often leads to issues related to material inconsistency. The printed part's properties can differ from those of the base material due to micro-voids and a layered structure formed during the printing process, which negatively affects its strength and durability over time.

The project aims to develop a scientifically grounded approach to forecast the behaviour of these printed parts over prolonged periods. To this end, engineering models explicitly tailored for 3D printing applications are being developed. Both material and structural characteristics are being analysed to understand and predict long-term performance.

By the mid-point of the project, theoretical models have been created, and experimental studies using PLA and PETG samples—two of the most common materials used for rapid prototyping—have been launched. In the following stages of the project, tests will also be conducted on higher-grade materials to broaden the applicability and improve the precision of the developed methodology.

Several short-term tests have already been carried out, each lasting 50–60 hours. Preparations are currently underway for long-term experiments, which may run for several weeks or even months. Based on the results of these tests, it will be possible to predict the mechanical behaviour of materials over extended periods.

The results of the project have already been presented at multiple international scientific conferences, including the European Conference on Composite Materials - Europe’s largest conference dedicated to composite materials- and the prestigious CompTest 2025, held this year in Riga. The project actively involves both experienced researchers and students, thereby fostering the professional growth of young scientists and promoting intergenerational knowledge transfer.

The project "Investigation of the Time-Dependent Mechanical Properties of 3D-Printed Polymer Structures at Different Structural Levels" (TiMe3D) is funded by the Latvian Council of Science under the Fundamental and Applied Research Projects programme (Project No. lzp-2023/1-0075).

The project implementation period is from January 1, 2024, to December 31, 2026.

More information about the project’s scientific results is available on the project website.

Details on communication and outreach activities can also be found on the project’s social media page:

👉 https://www.facebook.com/profile.php?id=61561453310525

 

Recommended articles

innovation technologies

Postdoctoral research on the extraction of prebiotics from agricultural products

Postdoctoral research “Possibilities of using agricultural products for the extraction of prebiotics for microencapsulation of synbiotic products” has been launched. The project aims to develop new, sustainable agricultural product utilization technologies for the extraction of prebiotics and th…

The Institute of Agricultural Resources and Economics

January 13, 2026

technologies

AKITI-Developed Software Project Gains Recognition in a European Space Agency Competition

To promote space-technology-based innovation and its practical application on Earth, highlighting promising projects with high commercialization potential, startups, scientists, and industry experts from the deep-tech ecosystem gathered at an event organized by the European Space Agency (ESA) Busin…

Riga Technical University

January 12, 2026

innovation technologies

Innovative technology that speeds up the aging of beverages in barrels being developed in Latvia

Latvian beverage producer Dvoretsky Distillery is a family business founded in 2022 that has so far offered niche products: beverages made according to ancient craft methods and recipes. After many years of working with the distillate aging process and seeing both its complexity and the potentially…

Latvian Investment and Development Agency

January 9, 2026

research humanities and arts

Strengthening Public Trust through Clear Communication of Achievements and Coordination of Government Institutions

Researchers from the Faculty of Economics and Social Sciences (FESS) of the University of Latvia (UL), in a study on strengthening public engagement and trust, recommend improving communication with residents about accomplished work and enhancing coordination among public administration institution…

University of Latvia

January 9, 2026