UL Conducts Unique Research in Quantum Properties of Materials and Nanoelectronic Devices in the Baltics

Author
UL Faculty of Science and Technology

January 10, 2025

The University of Latvia (UL) Faculty of Physics, Mathematics, and Optometry has made a significant contribution to the development of materials science and nanotechnology. A closed-cycle cryostat system has been enhanced with unique equipment that enables comprehensive quantum property research of novel materials and testing of nanoelectronic devices under various operational modes. This setup, the only one of its kind in the Baltics, facilitates sample rotation and allows charge carrier transport measurements in a magnetic field (magnetotransport measurements) across a broad temperature range from 2 to 300 kelvins.

"Significant breakthroughs in modern science are impossible without advanced scientific equipment. This new addition enables experimental research previously unattainable in the Baltics. Since the discovery of the first transistor in the 1950s, the rapid development of miniaturization technologies and the materials used has transformed daily life. This transformation continues today. The research of nanoelectronic devices, including sensors, ultra-fast transistors, and various other functional components, is ongoing worldwide," explains Dr. chem. Gunta Kunakova, leading researcher at the UL Institute of Chemical Physics.

Under Dr. chem. Kunakova's leadership, the UL Institute of Chemical Physics conducts fundamental research on novel materials such as atomically thin layers and nanowires.

One of the core methods for testing the electronic properties of materials, for instance, to determine how quickly electrons can move within them in the presence of an electric field, is magnetotransport measurement. In such studies, charge carrier transport is measured under the influence of a magnetic field. The equipment allows changing the angle at which the sample interacts with the magnetic field, enabling the determination of properties specific to a sample's plane, interface, or particular crystallographic direction. These measurements provide a comprehensive characterization of the material's properties.

csm_1_7695d1621a.jpg
The sample holder of the equipment - the new addition will enable experimental research that was previously impossible in the Baltics. Image: Faculty of Science and Technology at the UL.

"Thanks to the new equipment, we can now conduct extensive fundamental research on the quantum properties of novel materials and test the functionality of nanoelectronic devices under different conditions - something that was previously impossible. The benefits of these studies will manifest in the future. For example, utilizing the properties of topological insulators could enable protected charge carrier transport, which could form the basis for significantly more energy-efficient electronic devices and be used in 'error-resistant' quantum computing," explains Dr. chem. Kunakova.

The availability of such measurements significantly improves the quality and scope of scientific data and enables research on novel materials and nanoelectronic devices at a much higher level.

The newly acquired equipment is expected to play a key role in training new specialists and conducting innovative research on materials and nanoelectronic devices, thereby reaching higher technological readiness levels.

Using the additional equipment for the closed-cycle cryostat PPMS Dynacool-9T - a sample holder enabling sample rotation during magnetotransport measurements - the University of Latvia can now perform angle-dependent magnetotransport characterization of the quantum properties of innovative materials and nanoelectronic devices.

This work is implemented within the research project funded by the Latvian Council of Science and the UL Foundation program "MikroTik Project Competition in the Fields of Natural, Technological, and Medical Sciences", supported financially by "Mikrotīkls", Ltd..

 

Title image is for illustrative purposes only. Source: UL Institute of Chemical Physics.

Recommended articles

research collaboration space quantum technologies

Space and Quantum – Latvia’s Contribution to Europe’s Future Technologies

Latvia is strengthening its position in the European technology landscape by advancing quantum communication and space research in cooperation with international partners. “Techritory 2025” is a European-level forum on the future of digital policy and innovation, held in Riga since 2018. This year,…

The Ministry of Education and Science

October 29, 2025

research international collaboration

Baltic States Sign Semiconductor MoU to Boost Investment, Research, and Europe’s Tech Independence

Three Baltic nations – Latvia, Lithuania, and Estonia – today signed a Memorandum of Understanding (MoU) to strengthen cooperation between their national chip competence centres. By aligning national strategies and pooling expertise, the countries aim to accelerate innovation, expand research capac…

Techritory

October 24, 2025

opportunity collaboration research entrepreneurship

"BioPhoT" offers a new initiative for science-industry collaboration

BioPhoT, the biomedical and photonics research platform for innovative products, launches a new initiative - "BioPhoT" Industry Challenge, creating a space where science and industry meet, accessible to everyone. Here, companies have a unique opportunity to present their technological challeng…

BioPhoT

October 23, 2025

research research

Researchers Test Various Heating Materials; Brewing Waste – Drabs – Earns Praise

Researchers at Riga Technical University (RTU) are testing heating pellets made from a wide range of plants and plant residues. By the end of the year, they promise to develop a tool that will allow anyone to determine the most economical way to heat their home. Traditionally, wood pellets a…

Ilze Kuzmina, Latvian Radio News Service correspondent

October 23, 2025